Bio-Inspired Polymer Membrane Surface Cleaning

نویسندگان

  • Agnes Schulze
  • Martin Schmidt
  • Isabell Thomas
  • Marco Went
  • Kristina Fischer
  • Andrea Prager
چکیده

To generate polyethersulfone membranes with a biocatalytically active surface, pancreatin was covalently immobilized. Pancreatin is a mixture of digestive enzymes such as protease, lipase, and amylase. The resulting membranes exhibit self-cleaning properties after “switching on” the respective enzyme by adjusting pH and temperature. Thus, the membrane surface can actively degrade a fouling layer on its surface and regain initial permeability. Fouling tests with solutions of protein, oil, and mixtures of both, were performed, and the membrane’s ability to self-clean the fouled surface was characterized. Membrane characterization was conducted by investigation of the immobilized enzyme concentration, enzyme activity, water permeation flux, fouling tests, porosimetry, X-ray photoelectron spectroscopy, and scanning electron microscopy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A review on robotic fish enabled by ionic polymer–metal composite artificial muscles

A novel actuating material, which is lightweight, soft, and capable of generating large flapping motion under electrical stimuli, is highly desirable to build energy-efficient and maneuverable bio-inspired underwater robots. Ionic polymer-metal composites are important category of electroactive polymers, since they can generate large bending motions under low actuation voltages. IPMCs are ideal...

متن کامل

Bio-Decorated Polymer Membranes: A New Approach in Diagnostics and Therapeutics

Today, demand exists for new systems that can meet the challenges of identifying biological entities rapidly and specifically in diagnostics, developing stable and multifunctional membranes, and engineering devices at the nanometer scale. In this respect, bio-decorated membranes combine the specificity and efficacy of biological entities, such as peptides, proteins, and DNA, with stability and ...

متن کامل

A bio-inspired two-layer multiple-walled carbon nanotube-polymer composite sensor array and a bio-inspired fast-adaptive readout circuit for a portable electronic nose.

We report a fully integrated, portable, battery-operated electronic nose system comprising a bio-inspired two-layer multiple-walled carbon nanotube (MWNT)-polymer composite sensor array, a bio-inspired fast-adaptive readout circuit, and a microprocessor embedded with a pattern recognition algorithm. The two-layer MWNT-polymer composite sensor is simple to operate, and the membrane quality can b...

متن کامل

An Energetically-Autonomous Robotic Tadpole with Single Membrane Stomach and Tail

We present an energetically autonomous robotic tadpole that uses a single membrane component for both electrical energy generation and propulsive actuation. The coupling of this small bio-inspired power source to a bio-inspired actuator demonstrates the first generation design for an energetically autonomous swimming robot consisting of a single membrane. An ionic polymer metal composite (IPMC)...

متن کامل

Self-cleaning Metal Organic Framework (MOF) based ultra filtration membranes - A solution to bio-fouling in membrane separation processes

Bio-fouling is a serious problem in many membrane-based separation processes for water and wastewater treatment. Current state of the art methods to overcome this are to modify the membranes with either hydrophilic additives or with an antibacterial compound. In this study, we propose and practise a novel concept to prevent bio-fouling by developing a killing and self-cleaning membrane surface ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017